Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xu-Hong Yang, ${ }^{\text {a }} \ddagger$ Ming-Hu $\mathbf{W u},{ }^{\mathbf{b}} *$ Wei-Dong Zou ${ }^{\mathbf{c}}$ and Chuan Li ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry and Life Sciences, Xianning College, Xianning 437005, People's Republic of China, and ${ }^{\text {c }}$ Department of Physics, Xianning College, Xianning 437005, People's Republic of China
\# Current address: Xianning College, Xianning 437005, People's Republic of China

Correspondence e-mail:
minghuwu@hotmail.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.047$
$w R$ factor $=0.110$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-3-(1,3-Benzodioxol-5-yl)-1-phenyl-2-propen-1-one

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$, the dihedral angle between the benzene rings is $12.0(1)^{\circ}$. In the crystal structure, the molecules are linked through $\pi-\pi$ interactions and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen-bonding interactions.

Comment

Chalcones are important biological compounds. They show antibacterial, antifungal, antitumor and anti-inflammatory properties (Dimmock et al., 1999). They are also intermediates in the biosynthesis of flavonoids, which are substances widespread in plants and with an array of biological activities (Le Bail et al., 2001). The title compound, (I), was synthesized by AlvarezIbarra et al. (1992). However, we have recently reexamined (I) and its structure is reported here.

(I)

In the molecular structure of (I) (Fig. 1), the C1-C6 phenyl ring is taken as plane $1, \mathrm{C} 10-\mathrm{C} 15$ as plane 2 , and the central atoms, C7-C10, as plane 3, with dihedral angles between them, A_{12}, A_{13} and A_{23} of 12.0 (1), 24.0 (1) and 15.1 (1) ${ }^{\circ}$, respectively, showing that the two benzene rings are rotated in opposite directions with respect to plane 3. The torsion angle $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ is -177.7 (17) ${ }^{\circ}$ and keto atom O 1 deviates from plane 3 by 0.23 (1) A. The dioxylmethylene group attached at C13 and C14 is slightly twisted with respect to plane 2, with torsion angles $\mathrm{C} 14-\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 16$ and $\mathrm{C} 13-$ $\mathrm{C} 14-\mathrm{O} 2-\mathrm{C} 16$ of 5.1 (2) and $-4.5(2)^{\circ}$, respectively.

In the crystal structure, molecules are paired by C $\mathrm{H} \cdots \pi$ (arene) interactions via H 12 to the centroid of $\mathrm{C} 10-\mathrm{C} 15$, $C g$, in an adjacent molecule (symmetry code: $\frac{1}{2}-x, \frac{1}{2}+y, z$). Furthermore, weak $\pi-\pi$ stacking intermolecular interactions are present, such that the benzene rings ($\mathrm{C} 1-\mathrm{C} 6$) belonging to adjacent layers form pairs of molecules related by centers of symmetry. The centroid-centroid distance involved is 3.993 (1) \AA and the perpendicular distance is 3.55 (1) \AA, with the benzene rings in adjacent layers lying parallel to each other (Fig. 2).

Received 12 June 2006 Accepted 26 June 2006

Experimental

The title compound was synthesized by grinding a mixture of acetophenone $\quad(6.01 \mathrm{~g}, \quad 0.05 \mathrm{~mol}), \quad 3$,4-dioxymethylenebenzaldehyde $(7.51 \mathrm{~g}, 0.05 \mathrm{~mol}), \mathrm{NaOH}(0.2 \mathrm{~g}, 0.005 \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.46 \mathrm{~g}$, 0.025 mol) at room temperature for 20 min . The resulting solid was washed with water until neutral. The residue was recrystallized from ethanol (yield 90%). Crystals suitable for X-ray analysis were obtained at room temperature by slow evaporation of a dichloromethane and petroleum ether ($1: 1 \mathrm{v} / \mathrm{v}$) solution (m.p. 380-382 K).

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$
$M_{r}=252.26$
Orthorhombic, Pbca
$a=11.4464$ (11) \AA
$b=7.5202$ (7) \AA
$c=28.277$ (3) \AA
$V=2434.1(4) \AA^{3}$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.377 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.30 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.972, T_{\text {max }}=0.981$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.110$
$S=1.07$
2388 reflections
172 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots C g^{\mathrm{i}}$	0.93	2.95	$3.810(2)$	155

Symmetry code: (i) $x,-y-\frac{1}{2}, z-\frac{1}{2} . C g$ is the centroid of atoms $\mathrm{C} 10-\mathrm{C} 15$.
All H atoms were placed in calculated positions and refined using the riding model $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H}) 1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figure 1
The molecular structure and atom-labelling scheme of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram showing the crystal structure of the title compound, (I), in the $a b$ plane. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

We gratefully acknowledge financial support of this work by the Plan of Group of Young Scientist Innovation Foundation of Hubei Province under grant No. 2004 T006.

References

AlvarezIbarra, C., Perez, M. S. A., Fernandez, M. J., Maria, J. F., Serrano, D. \& Sinisterra, V. (1992). J. Chem. Res. (S), 10, 326-327.
Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Dimmock, J. R., Elias, D. W., Beazely, M. A. \& Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
Le Bail, J. C., Pouget, C., Fagnere, C., Basly, J. P., Chulia, A. J. \& Habrioux, G. (2001). Life Sci. 68, 751-761.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

